We consider distributed first-order optimization procedures (i.e. gradients). Let f be a convex and geographically distant datacenters called multi-step primal-dual (MSPD) and its corresponding optimal convergence rate. Under global regularity, we provide a simple yet efficient algorithm called Distributed Randomized Smoothing (DRS) based on a local smoothing of the objective function, and show that DRS is within a $d^{1/4}$ multiplicative factor of the optimal convergence rate, where d is the underlying dimension.

Background & Setting

1. Motivations

Goals
- Improved algorithms for distributed and decentralized optimization
- Impact of the communication network on learning
- Structure of the network vs. algorithm efficiency

Applications
- Machine Learning on the cloud
- Learning using geographically distant datacenters
- Empirical risk minimization: learning using

2. Distributed optimization on networks

Optimization problem
Let f_i be convex and L_i-Lipschitz functions. We consider minimizing the average of the local functions.

$$\min_{\theta} f(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$

Optimization procedures
We consider distributed first-order optimization procedures (i.e. gradients).

Network communications
Let $G = (\mathcal{V}, \mathcal{E})$ be a connected simple graph of n computing units and diameter Δ, each having access to a function $f_i(\theta)$ over $\theta \in \mathbb{R}^d$. Local computations take a unit of time, while communications takes a time τ. The average of the Lipschitz constants of local functions f_i.

Local regularity

3. Decentralized setting

- Local communication is performed through gossip (Boyd et al., 2006).
- Node i knows $\sum_{j} W_{ij} x_j = (W x)_i$, where W verifies:
 1. W is an $n \times n$ symmetric positive semi-definite matrix.
 2. The kernel of W is the set of constant vectors: $\ker(W) = \text{Span}(1)$.
- Let $\gamma(W) = \max_{i,j} |W_{ij}| / \lambda_i(W)$ be the (normalized) eigengap of W.

4. Decentralized algorithms

Optimal convergence rate
For any $\gamma > 0$, there exists a gossip matrix W of eigengap γ and functions f_i such that the time to reach a precision $\varepsilon > 0$ is lower bounded by

$$\Omega \left(\frac{R L}{\varepsilon} \frac{\tau}{\sqrt{\varepsilon}} \right),$$

where R is the diameter of the search space Θ, $L = \sqrt{\sum_{i=1}^{n} L_i^2}$ is the RMS average of the Lipschitz constants of local functions f_i.

Optimal algorithm
Novel algorithm called Multi-Step Primal-Dual (MSPD):
- Similar to the recent DCS algorithm, [Lan et al., 2017]
- Primal-dual reformulation,

$$\min_{\theta, \lambda} \max_{\omega} \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) - \text{tr} \lambda^\top W \Theta W.$$

Chambolle-Pock algorithm for saddle-point optimization,

- Minimizing $f(\theta) = \Phi(\theta) + \sum_{i=1}^{n} \lambda_i f_i(\theta)$
- $\theta_{t+1} = \argmin_{\theta} \frac{1}{n} \sum_{i=1}^{n} f_i(\theta) - \theta_{t}^\top \lambda_{t+1} + \frac{1}{2n} \|\theta - \theta_{t}\|^2, \forall i \in \{1, \ldots, n\}$.

- Approximation of the proximal operator using subgradient descent, $\sum_{i=1}^{n} f_i(\theta)$ where f_i is the RMS average of the local functions.

Gossip accelerated using Chebyshev polynomials

$$W \leftarrow \Phi_N(W)$$

where Φ_N is a polynomial of degree at most K and $\gamma(\Phi_N(W))$ is maximal.

Global regularity

6. Centralized algorithms

Optimal convergence rate
For any graph of diameter Δ and any block-box procedure, there exist functions f_i such that the time to reach a precision $\varepsilon > 0$ is lower bounded by

$$\Omega \left(\frac{R L}{\varepsilon} \frac{\tau}{\sqrt{\varepsilon}} \right),$$

where L_{i} is the Lipschitz constant of the average (global) function f.

Efficient algorithm: Distributed Randomized Smoothing (DRS)
- Extension of Randomized Smoothing to dist. opt., [Duchi et al., 2012]
- Uses extra computation steps to smooth f and improve convergence, $f(\theta) = \Phi(\theta + \gamma N(0, I))$ where $N \sim N(0, I)$,

$$O\left(\frac{R L}{\varepsilon} \frac{\tau}{\sqrt{\varepsilon}} \right).$$

Conclusion

- Optimal decentralized convergence rate: $\Theta \left(\frac{R L}{\varepsilon} \frac{\tau}{\sqrt{\varepsilon}} \right)$
- Optimal centralized convergence rate:
 - Lower bound: $\Omega \left(\frac{R L}{\varepsilon} \frac{\tau}{\sqrt{\varepsilon}} \right)$
 - Upper bound: $O \left(\frac{R L}{\varepsilon} \frac{\tau}{\sqrt{\varepsilon}} \right)$
- Early stages are fast and rely on efficient communication.
- Late stages are slow and do not depend on the communication network.

References

Kevin Scaman1 Francis Bach2 Sébastien Bubeck3 Yin Tat Lee4,5 Laurent Massoulié2,5

1Huawei Noah’s Ark Lab, 2INRIA, ENS, PSL, 3Microsoft Research, 4University of Washington, 5MSR-INRIA Joint Centre